
CLICK-UP:Towards SoftwareUpgrades ofClick-driven
StatefulNetworkElements

Junxiao Wang, Yuchen Huang, Heng Qi, Keqiu Li, and Steve Uhlig

wangjunxiao@live.com, yuchenhuang@mail.dlut.edu.cn, hengqi@dlut.edu.cn,
likeqiu@gmail.com, steve.uhlig@qmul.ac.uk

Contribution
a. Explicitly integrate essential modules in a service context-aware manner, and cut down upgrade overheads.
b. Forcefully integrate a state synchronization scheme into modules, and avoid service disruption.
c. Employ a lightweight runtime library as the skeleton of upgrades, and ease orchestration.

Workflow of CLICK-UP
(1) The dashboard exposes the DAG or-
chestrator to operators, allowing operators
to define their upgrade needs as a DAG.
The DAG is based on well-known semantics
and consists of a series of pipeline process-
ing related atom functionalities, including
their required service states.
(2) The DAG should be parsed to a set
of Click modules (called elements), and its
new state collection is integrated into the
corresponding modules. All modules have
a state synchronization mechanism and a s-
tate reconstruction bootstrap.
(3) The modules are compiled, built into
kernel space, and the persistent storage in
user space is initialized with a new version
number. At the same time, former version
related states are sent back to the module.
(4) The new configuration is created and
the upgraded network element is rebooted
with its former service states fulfilled by a
recovery bootstrap.

 State Recover

netlink

Upgrade needs Dashboard Library Upgrade_list

Manual Coding
Module

Category
Config_file Final_list

Elements.conf
Elements.cc
elements.o

Click.ko Modules.o
Libclick.a &&

click.o

Modules

Modules NetLink

Modules Memory Cache

Config_file

Lexer Click Router

Flow Packet

Flow Packet

Dependency explore

Input

State

link

DAG Orchestrator

Interfaces
Modules API

States API

Generate Modules
and Compile

Modules
States

SR-elem2make
elem2make

elem2exp

SR-elem2exp

User space

NetLink

Kernel space

Stateful DAG Processing

PAP
State Restore

output

Integration Layer

Data Layer

Native-Click Process ing

CLICK-UP Processing

General Processing

Orchestration Layer

Atom-based Orchestration

Atom1 Atom2 Atom3 Atom4 Atom5

Libmodules
Libstates Libnetlink

State ObjectState SynHandler Netlink ProxyPacket Pipeline

StateB StateC

State Mapper

StateA StateB StateC

StateA

Atom Mapper

Modules

Runtime Library

Flows

Module1 Module2 Module (New)

DAG Orchestrator Orchestrating with atoms rather than elements

(1) The atoms are a series of core functionalities called atom
functionalities, e.g., packet parsing, payload modification,
and the like, each of which is easy for operators to follow.
(2) The atoms are in accordance with the most concise ser-
vice context (essential modules/elements), which are logi-
cally consistent with upgrade intents.
(3) The state management is also based on atoms.

Pain Point-1
Time-consuming Integration

0 10 20 30 40 50
No. of Integrated Module

4

6

8

10

12

14

16

U
pg

ra
de

 D
el

ay
 (s

)

14.459

Comparable size with
 commercial network elements

Integrating new modules with upgraded network ele-
ments is a time-consuming process. During this pro-
cess, however, the packet-processing functionalities
are out-of-work. This brings several issues including
the inability to elastically scale out network func-
tions on-demand and to quickly recover from down-
time.

Pain Point-2
Stateful Service Disruption

0% 20% 40% 60% 80%
Upgrade Happens with Partial 2Gb-size File transmitted

40

45

50

55

60

65

70

75

80

D
ur

at
io

n
of

 T
ra

ns
m

is
si

on
 (s

)

State loss on NAT port mapping

1 2 3 4 5 6 7 8 9 10 11 12 13
Upgrade Delay (s)

70

75

80

85

90

95

100

D
ur

at
io

n
of

 T
ra

ns
m

is
si

on
 (s

)

TCP retransmission idleness

With no mechanism to reconstruct lost states for
network elements, stateful functionalities are unable
to correctly handle packets after upgrade, leading to
service disruption. This may involve states such as
connection information in a stateful firewall, address
mappings in a network address translator (NAT), or
server mappings in a stateful load balancer.

References

[1] J. Wang, Y. Huang, H. Qi, K. Li, S. Uhlig. CLICK-UP: Towards Software Upgrades of Click-driven Stateful Network
Elements. In Proc. of SIGCOMM’18 Posters and Demos, 2018.

Source Code
The source code is at https://github.com/CLICK-UP/, the project website is at https://click-up.github.io/.

Power of CLICK-UP
Testbed Evaluation Results (PNAT)

1 5 10 15 20 25 30 35 40 45 50
No. of Integrated Module

0
2
4
6
8

10
12
14
16
18

U
pg

ra
de

 D
el

ay
 (s

)

Native
Optimized

0% 20% 40% 60% 80%
Upgrade Happens with Partial 2Gb-size File transmitted

40

45

50

55

60

65

70

75

80

D
ur

at
io

n
of

 T
ra

ns
m

is
si

on
 (s

) Optimized
Native

5 6 7 8 9 10 11 12
Upgrade Delay (s)

50

60

70

80

90

100

D
ur

at
io

n
of

 T
ra

ns
m

is
si

on
 (s

) Native
Optimized

Testbed Evaluation (Whitelist Firewall)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
File Identification

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160

D
ow

nl
oa

d
C

om
pl

et
e

Ti
m

e
(s

) software upgrade happens

software upgrade happens

Native Click with Software Upgrade
CLICK-UP with Software Upgrade
Native Click without Software Upgrade

Acknowledgment
This work is supported by National Key R&D Program of China (2016YFB1000205), State Key Program of National Natural

Science of China (61432002), National Natural Science Foundation of China - Guangdong Joint Fund (U1701263) and National

Natural Science Foundation of China (61702365, 61672379 and 61772112).

