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Topics of This Talk

Gradient Leakage Attack and its Threats

' See what’s the gradient leakage attack and how it performs

Existing Defenses and their Limitations

|dentify the challenges and how we can solve it

3 Proposed Defense and its Features

Framework, design and experimental results
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Gradient Leakage Attack and its Threats

See what’s the gradient leakage attack and how it performs
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Introduction to Federated Learning

t ﬂ / Global learning = " LOCaIlIl1 (l)zgning
ensortrow ‘ : éd@

Edge node 1

— @ —&x

Edge node 2

federated

(a) TensorFlow Federated (TFF): a framework
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Solutions Market

2021-2028

[1]https://www.tensorflow.org/federated/
[2]https://www.everestgrp.com/

(b) Market Statistics and Application of FL [3]https://www.verifiedmarketresearch.com/
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Gradient Leakage Attack: Deep Leakage from Gradients

MIT, NeurlPS 2019 [1]

= Background: An honest-but-curious attacker, who can be the federated server. The attacker

can observe gradients of a victim and he attempts to recover data from gradients.
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(b) Workflow of the Optimization-based Reconstruction
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Gradient Leakage Attack pixel-wise level for images
Deep Leakage from Gradients Inverting Gradients
MIT, NeurlPS 2019 [1] Siegen, NeurlPS 2020 [2]

Iters—O Iters=10 Iters=50 Iters=100 Iters=500 | Ground Truth

(a) Deep Leakage on Images from MNIST, CIFAR-100, (b) Additional Positive Cases for a Trained
SVHN and LFW [1] ResNet-18 on ImageNet [2]

Question: How to Protect Privacy from Gradients? Cryptographic Methods?



& Part

Existing Defenses and their Limitations

Identify the challenges and how we can solve it
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Existing Defenses against Gradient Leakage pros and cons

= General Privacy Protection Methods

- Homomorphic Encryption (HE)

- Advantages: Gradient Aggregation is Performed on Ciphertexts.
- Multi-Party Computation (MPQC)
- Advantages: Zero-Knowledge of Gradient Aggregation’s Input/Output.

- Limitations: High Computation and Communication Overhead

- Local Differential Privacy (LDP)

- Advantages: Identify Samples from Gradients within Theoretical Bound.

- Limitations: High Convergence Accuracy Loss
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Defense Specific to Gradient Leakage Attack
“‘Provable Defense against Privacy Leakage in Federated Learning”, Duke, CVPR 2021
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Defense Specific to Gradient Leakage Attack
= Limitations: Rigid Pattern is easily broken down once the Perturbed Layer is Muted by the Attacker.
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Targets of Defense against Gradient Leakage

= Lightweight, Accuracy-Guaranteed, Privacy-Adequate Defense

- Lightweight in Overhead (Computation, Storage, Communication)

- Cryptographic Methods e.g., HE, MPC are with significant Overhead.

- Guaranteed in Convergence Accuracy Loss

- Methods like LDP are with significant Accuracy Loss.

- Adequate in Privacy Protection and Hard to Break Down

- Methods with Rigid Pattern are easily Inferred and Broken Down.
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Proposed Defense and its Features

Framework, design and experimental results




Q THE HONG KONG
POLYTECHNIC UNIVERSITY
0 e A58

Defense against Gradient Leakage basic idea
= |nspiration: Each Client Randomly Selects Part of Local Gradients to Perturb

- Rigid-Rattern Random Pattern
- Defense Becomes Hard to Break Down.{

- B - No Significant Overhead. /

- Perturbation Can be Compensated. «
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Defense against Gradient Leakage workflow
= The workflow consists of two stages: Local Random Perturbation and Global
Update Compensation.

[Local Random
Perturbation

Global Update
Compensation
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Local Random Perturbation

- Randomly select a certain part of slices
from local gradients and add artificial
noise to these selected slices.

Global Update Compensation
- Derive from the perturbed gradients,
more accurate information about the
original gradients as a compensation for
the global update.
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Defense against Gradient Leakage more considerations
» Privacy Leakage Risk Evaluation and Gradient Slicing

= Cons: Different layers ﬁ/
> 4

have different risks of

privacy leakage. _C _ .
Each Slice of Gradients has

Balanced Privacy Protection

(&) Random Perturbation is based on Gradient’s Logical Layers (b) Random Perturbation is based on Gradient’s Slices
e.g., Convolutional Layer (Conv) or Fully-Connected Layer (FC). where Each Slice has Equivalent Defense.

= Prevent Global Compensation from Being Abused by Attacker

= [Optional]: Local Clipping Operation
(Clipping Selected Gradients and Scaling them to similar
range corresponding to the Scale of Perturbation)

- Global Compensation is still Valid.
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Experimental Settings
= Attack Methods

» [1] DGA, Deep Leakage from Gradients, NeurlPS20109.
» [2] GIA, Inverting Gradients, NeurlPS2020.

= Baseline Defense Methods

= [1] GC, Gradient Compression.
= [2] DP, Differential Privacy, DP-Gaussian and DP-Laplacian.
= [3] PLD, Provable Defense against Privacy Leakage in Federated Learning, CVPR2021.

= Cared Metrics

= [1] Attack Reconstruction Quality (Image Similarities).

- Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM).
= [2] Accuracy (ACC) of Global Model on the Testing Set.
= [3] Average Round Time (ART) of Training.

» Datasets and Model
» MNIST, Fashion-MNIST, CIFAR, Convolutional Networks (LeNet)
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Experimental Results
= Privacy Protection Perspective
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(a) Visualization of Privacy Protection Results.

Attack results (without Defense) A

ttack results (with Defense)

[A] Measure on Different Defenses against the DGA.

MNIST - ACC 91.69% without defenses

Fashion-MNIST - ACC 91.80% without defenses

CIFAR-10 - ACC 54.15% without defenses

Ours GC DP-G[-L] PLD[-muted] Ours GC DP-GJ[-L] PLD[-muted] Ours GC DP-GI-L] PLD[-muted]
PSNR 9.41 9.52 9.36[9.39] 0.57[18.49] 9.66 9.83 9.57[9.62] 0.89[19.78] 9.61 9.79 9.55[9.52] 9.88[24.48]
SSIM 4.6E-2 5.1E-2 4.1E-2[4.3E-2] 5.3E-2[6.4E-1] 7.3E-2 7.7E-2 T.1E-2[6.5E-2] 8.2E-2[8.4E-1] 2.5E-2 2.6E-2 2.3E-2[2.4E-2] 2.9E-2[8.8E-1]

[B] Measure on Different Defenses against the GIA.

MNIST - ACC 88.14% without defenses

Fashion-MNIST - ACC 86.57% without defenses

CIFAR-10 - ACC 49.31% without defenses

Ours GC DP-G[-L] PLD[-muted] Ours GC DP-GI-L] PLD[-muted] Ours GC DP-G[-L] PLD[-muted]
PSNR 9.83 10.01 9.66[9.59] 10.43[19.61] 991 9.98 9.7419.80] 10.14[21.23] 10.11 10.32 9.95[9.86] 10.79[27.04]
SSIM 4.9E-2 5.1E-2 4.4E-2[4.6E-2) 5.7E-2[7.3E-1] 7.5E-2 8.3E-2 6.8E-2[6.7E-2] 8.9E-2[9.5E-1] 4.1E-2 4.2E-2 3.0E-2[3.4E-2] 4.4E-2[9.3E-1]

(b) Numerical Results of Privacy Protection (PSNR, SSIM).
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Experimental Results
= Convergence Accuracy Perspective
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[A] Measure on Different Defenses against the DGA.

MNIST - ACC 91.69% without defenses

Fashion-MNIST - ACC 91.80% without defenses

CIFAR-10 - ACC 54.15% without defenses

Ours GC DP-G[-L] PLD[-muted] Ours GC DP-GJ-L] PLD[-muted] Ours GC DP-G[-L] PLD[-muted]
ACC 90.43% 36.52% 10.37%[10.21%] 87.77%][-] 89.29% 33.11% 10.109%[9.98%] 86.35%][-] 52.47% 29.84% 10.19%[10.00%] 49.91%][-]
ART +8.45% | +4.63% +3.91%[3.74%] +14.52%][-] +8.11% | +3.75% | +3.89%[4.04%] +13.20%][-] +8.97% | +3.58% +4.03%[4.31%] +14.09%][-]

[B] Measure on Different Defenses against the GIA.

MNIST - ACC 88.14% without defenses

Fashion-MNIST - ACC 86.57% without defenses

CIFAR-10 - ACC 49.31% without defenses

Ours GC DP-G[-L] PLD[-muted] Ours GC DP-GJ-L] PLD[-muted] Ours GC DP-G[-L] PLD[-muted]
ACC 86.87% 32.29% 10.46%(9.85%] 84.09%[-] 84.65% 30.38% 9.86%(9.77%] 81.10%](-] 47.73% 23.35% 10.01%[10.16%] 45.16%]-]
ART +9.07% | +4.90% | +3.84%[3.66%] +16.12%]-] +8.62% | +4.23% | +4.14%[3.99%] +15.86%(-] +9.33% | +4.08% +4.15%[4.02%] +16.43%][-]

(b) Numerical Results of Accuracy (ACC) and Average Round Time (ART).
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To Conclude This Talk

= A Novel Defensive Mechanism against Gradient Leakage in FL

- Lightweight in Overhead (Computation, Storage, Communication).

- Guaranteed in Convergence Accuracy Loss.

- Adequate in Privacy Protection and Hard to Break Down.

« Takeaway 1. Local random perturbation + Aggregation
= Global uniform perturbation.
2. Correlation between global gradients and
that between random variables are different.
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