

✓ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Protect Privacy from Gradient Leakage Attack in Federated Learning

JUNXIAO WANG, SONG GUO, XIN XIE, HENG QI

PolyU Edge Intelligence Lab

DEPARTMENT OF COMPUTING 電子計算學系

Topics of This Talk

Gradient Leakage Attack and its Threats

See what's the gradient leakage attack and how it performs

Proposed Defense and its Features

Framework, design and experimental results

Gradient Leakage Attack and its Threats

See what's the gradient leakage attack and how it performs

Introduction to Federated Learning

(a) TensorFlow Federated (TFF): a framework for implementing Federated Learning

(b) Market Statistics and Application of FL

(c) FL workflow: How Federated Learning performs

[1]https://www.tensorflow.org/federated/[2]https://www.everestgrp.com/[3]https://www.verifiedmarketresearch.com/

Gradient Leakage Attack: Deep Leakage from Gradients MIT, NeurIPS 2019 [1]

Background: An *honest-but-curious* attacker, who can be the federated server. The attacker can observe gradients of a victim and he attempts to recover data from gradients.

Gradient Leakage Attack pixel-wise level for imagesDeep Leakage from GradientsInverting GradientsMIT, NeurIPS 2019 [1]Siegen, NeurIPS 2020 [2]

(a) Deep Leakage on Images from MNIST, CIFAR-100, SVHN and LFW [1]

(b) Additional Positive Cases for a Trained ResNet-18 on ImageNet [2]

Question: How to Protect Privacy from Gradients? Cryptographic Methods?

Existing Defenses and their Limitations

Identify the challenges and how we can solve it

Existing Defenses against Gradient Leakage pros and cons

- General Privacy Protection Methods
 - Homomorphic Encryption (HE)
 - Advantages: Gradient Aggregation is Performed on Ciphertexts.
 - Multi-Party Computation (MPC)
 - Advantages: Zero-Knowledge of Gradient Aggregation's Input/Output.
 - Limitations: High Computation and Communication Overhead
 - Local Differential Privacy (LDP)
 - Advantages: Identify Samples from Gradients within Theoretical Bound.
 - Limitations: High Convergence Accuracy Loss

Defense Specific to Gradient Leakage Attack

"Provable Defense against Privacy Leakage in Federated Learning", Duke, CVPR 2021

Defense Specific to Gradient Leakage Attack

Limitations: Rigid Pattern is easily broken down once the Perturbed Layer is Muted by the Attacker.

Targets of Defense against Gradient Leakage

- Lightweight, Accuracy-Guaranteed, Privacy-Adequate Defense
 - Lightweight in Overhead (Computation, Storage, Communication)
 - Cryptographic Methods e.g., HE, MPC are with significant Overhead.
 - Guaranteed in Convergence Accuracy Loss
 - Methods like LDP are with significant Accuracy Loss.
 - Adequate in Privacy Protection and Hard to Break Down
 - Methods with Rigid Pattern are easily Inferred and Broken Down.

Proposed Defense and its Features

Framework, design and experimental results

Defense against Gradient Leakage basic idea

Inspiration: Each Client Randomly Selects Part of Local Gradients to Perturb

Defense against Gradient Leakage workflow

The workflow consists of two stages: Local Random Perturbation and Global Update Compensation.

Local Random Perturbation

- Randomly select a certain part of slices from local gradients and add artificial noise to these selected slices.

Global Update Compensation

- Derive from the perturbed gradients, more accurate information about the original gradients as a compensation for the global update.

Defense against Gradient Leakage more considerations

Privacy Leakage Risk Evaluation and Gradient Slicing

(a) Random Perturbation is based on Gradient's Logical Layers e.g., Convolutional Layer (Conv) or Fully-Connected Layer (FC). (b) Random Perturbation is based on Gradient's Slices where Each Slice has Equivalent Defense.

- Prevent Global Compensation from Being Abused by Attacker
 - [Optional]: Local Clipping Operation
 (Clipping Selected Gradients and Scaling them to similar range corresponding to the Scale of Perturbation)
 - Global Compensation is still Valid.

Experimental Settings

- Attack Methods
 - [1] DGA, <u>Deep Leakage from Gradients</u>, NeurIPS2019.
 - [2] GIA, Inverting Gradients, NeurIPS2020.
- Baseline Defense Methods
 - [1] GC, Gradient Compression.
 - [2] DP, Differential Privacy, DP-Gaussian and DP-Laplacian.
 - [3] PLD, Provable Defense against Privacy Leakage in Federated Learning, CVPR2021.

Cared Metrics

- [1] Attack Reconstruction Quality (Image Similarities).
 - Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM).
- [2] Accuracy (ACC) of Global Model on the Testing Set.
- [3] Average Round Time (ART) of Training.
- Datasets and Model
 - MNIST, Fashion-MNIST, CIFAR, Convolutional Networks (LeNet)

Experimental Results

Privacy Protection Perspective

MNIST	690041	690041	
FASHION			
CIFAR-10	iii 🔍 🔊 🖉 💽 💏		
CIFAR-100	× 😹 💻 🔣 📖 🚺		
	Dour Data	ttool rooulto (without Defense)	Attack recults (with Defense)

Raw Data

Attack results (without Defense) Attack results (with Defense)

(a) Visualization of Privacy Protection Results.

[A] Measure on Different Defenses against the DGA.												
MNIST - ACC 91.69% without defenses Fashion-MNIST - ACC 91.80% without defenses CIFAR-10 - ACC 54.15% without defenses											t defenses	
	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]
PSNR	9.41	9.52	9.36[9.39]	9.57[18.49]	9.66	9.83	9.57[9.62]	9.89[19.78]	9.61	9.79	9.55[9.52]	9.88[24.48]
SSIM	4.6E-2	5.1E-2	4.1E-2[4.3E-2]	5.3E-2[6.4E-1]	7.3E-2	7.7E-2	7.1E-2[6.5E-2]	8.2E-2[8.4E-1]	2.5E-2	2.6E-2	2.3E-2[2.4E-2]	2.9E-2[8.8E-1]

[B] Measure on Different Defenses against the GIA.

	MNIST - ACC 88.14% without defenses					Fashion-MNIST - ACC 86.57% without defenses				CIFAR-10 - ACC 49.31% without defenses				
	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]		
PSNR	9.83	10.01	9.66[9.59]	10.43[19.61]	9.91	9.98	9.74[9.80]	10.14[21.23]	10.11	10.32	9.95[9.86]	10.79[27.04]		
SSIM	4.9E-2	5.1E-2	4.4E-2[4.6E-2]	5.7E-2[7.3E-1]	7.5E-2	8.3E-2	6.8E-2[6.7E-2]	8.9E-2[9.5E-1]	4.1E-2	4.2E-2	3.0E-2[3.4E-2]	4.4E-2[9.3E-1]		

(b) Numerical Results of Privacy Protection (PSNR, SSIM).

Experimental Results

Convergence Accuracy Perspective

Overhead Perspective

[A] Measure on Different Defenses against the DGA.													
	N	ANIST - AC	CC 91.69% without of	lefenses	Fashion-MNIST - ACC 91.80% without defenses				CIFAR-10 - ACC 54.15% without defenses				
	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]	
ACC	90.43%	36.52%	10.37%[10.21%]	87.77%[-]	89.29%	33.11%	10.10%[9.98%]	86.35%[-]	52.47%	29.84%	10.19%[10.00%]	49.91%[-]	
ART	+8.45%	+4.63%	+3.91%[3.74%]	+14.52%[-]	+8.11%	+3.75%	+3.89%[4.04%]	+13.20%[-]	+8.97%	+3.58%	+4.03%[4.31%]	+14.09%[-]	
[B] Me	[B] Measure on Different Defenses against the GIA.												

	MNIST - ACC 88.14% without defenses				Fashio	ACC 86.57% with	out defenses	CIFAR-10 - ACC 49.31% without defenses				
	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]	Ours	GC	DP-G[-L]	PLD[-muted]
ACC	86.87%	32.29%	10.46%[9.85%]	84.09%[-]	84.65%	30.38%	9.86%[9.77%]	81.10%[-]	47.73%	23.35%	10.01%[10.16%]	45.16%[-]
ART	+9.07%	+4.90%	+3.84%[3.66%]	+16.12%[-]	+8.62%	+4.23%	+4.14%[3.99%]	+15.86%[-]	+9.33%	+4.08%	+4.15%[4.02%]	+16.43%[-]

(b) Numerical Results of Accuracy (ACC) and Average Round Time (ART).

To Conclude This Talk

- A Novel Defensive Mechanism against Gradient Leakage in FL
 - Lightweight in Overhead (Computation, Storage, Communication).
 - Guaranteed in Convergence Accuracy Loss.
 - Adequate in Privacy Protection and Hard to Break Down.
 - Takeaway 1. Local random perturbation + Aggregation
 - = Global uniform perturbation.
 - 2. Correlation between global gradients and that between random variables are different.

Thank you!

PolyU Edge Intelligence Lab

